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Abstract. Molecular dynamics simulation of theα-Al 2O3 crystal was performed. Structural,
thermodynamical and vibrational properties were determined by using a modified shell model.
In this model, the energy conservation was ensured very accurately by assigning a small mass
to each shell and treating them as dynamic variables. Simulation results were compared with
experimental data, particularly with inelastic neutron scattering experiments giving the density
of phonon states. Calculated structural and thermodynamical properties were in very good
agreement with data obtained from the literature. Inelastic neutron scattering experiments were
performed; calculated phonon characteristics compared very well with these experimental results.

Introduction

Sapphire orα-Al 2O3 is a widespread mineral occurring in a variety of high-temperature rock
types. Its extreme hardness and resistance as well as its optical properties lead to many
physical and technical applications. It is of great importance to the chemical industry as a
catalyst. Due to the many applications ofα-Al 2O3 as a structural, electronic and optical
material, there is an increasing need to understand its dynamic properties.

Further, as dynamic mechanisms occur in materials in the range of the picosecond to the
femtosecond, it is very difficult to observe and analyse them experimentally. So, molecular
dynamics simulation can play a valuable role in revealing and interpreting in a easier way
the dynamic behaviour of a crystal lattice. The introduction of the shell model by Dick
and Overhauser [3] to describe the ionic polarization has given important improvements in
the reproduction of dynamic properties of the crystal lattice. Now, it is in current use in
simulation [4, 5]. Nevertheless, it presents some drawbacks as regards energy stability in
molecular dynamics. In this study, a modified shell model has been developed to ensure
simulation to high accuracy. Using this new shell model, some structural, thermodynamical
and vibrational properties ofα-Al 2O3 were determined from simulation and compared with
experiment.

1. Shell model

Molecular dynamics has been used to simulate the properties of theα-Al 2O3 lattice. This
method has already proved efficient in simulating lattice properties [1, 2]. In order to have a
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Figure 1. Core–shell model.δ is the displacement of the shell with respect to the core resulting
from the polarizing fieldE.

good representation of the dynamic behaviour, each particle is described using the core–shell
model which enables introduction of ionic polarization.

This model was first introduced by Dick and Overhauser [3] and was used in various
studies on wide-band oxides [4, 5]. Each ion is represented by a massive core and a massless
shell which ‘simulates’ the polarizable valence electrons. The total ionic chargeZ is divided
between core and shell and the interaction between the core and the shell of the same ion is
described using a harmonic spring model with a force constantK. Polarization is described
in terms of the displacement of the shell relative to the core through the polarizing field due
to the surrounding ions. The magnitude of the dipole model is determined by the amplitude
of the core–shell separation (figure 1). Therefore, in contrast to the rigid model, the strong
coupling occurring in ionic solids between the short-range interaction and the polarization
is thus taken into account.

This model, however, presents an important drawback: the assumption of the massless
shell is a way to introduce the adiabatic approximation (Born–Oppenheimer) [6] and so the
shells have to follow instantaneously the motion of the core. This condition is very difficult
to obtain in practice. Consequently, due to the partial relaxation of the shells, the motion
of the cores is damped during the simulation and a slight inconsistency between force and
energy results [7].

We have solved this problem by assigning a small mass to the shells which are now
treated as dynamic variables (like the cores) but evolving along their own fictitious equation
of motion. By borrowing ideas from the Car–Parinello method [8], the adiabatic condition
may be maintained to the necessary degree to give reliable ion dynamics. The equations of
motion for the additional degrees of freedom are integrated in parallel with the equations
governing the core positions with a short time step, adapted to the rapid oscillations which
the additional degrees of freedom undergo, from a starting point at which the adiabatic
condition is satisfied. This second order dynamics for the shells gives rise to oscillating
fictitious forces on the cores that average out during the slower dynamics of the cores
[8, 9]. If the range of oscillation frequencies does not overlap the density of states of the
translational degrees of freedom of the system studied, the energy transfer between the
translational and the additional degrees of freedom is slow and adiabacity is maintained for
long periods [24]. The oscillation frequencies can be tuned into an appropriate range by
choosing appropriate values for the mass of the shells. Moreover, the value of the integration
time step is also determined by this mass. In practice, the largest mass compatible with
a reasonable energy transfer during the typical times of the simulation is chosen to allow
the time step to be maximized. The mass of the shells has been chosen to be 10% of the
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proton mass. This choice pushes the oscillation frequencies out of the range of the ionic
translational oscillations, so ensuring energy conservation to high accuracy.

2. Other details on simulation

The interaction between cores is assumed to be purely Coulombic whereas the interaction
between shells has two components: a long-range purely Coulombic interaction and a short-
range interaction described by the Buckingham potential [10] as follows:

VijB = A exp

(
− rij
ρ

)
+ C

r6
ij

. (1)

The choice of short-range interaction between the shells allows taking into account the
strong coupling between short-range repulsion and polarization occurring in ionic solids.
Indeed, polarization, which involves displacement of valence shell electrons, modifies
the short-range interaction between ions. The omission of this coupling leads to a poor
description of dielectric and defect properties [11].

The Coulombic component is calculated under periodic boundary conditions using the
Ewald method [12] which allows us to cope with long-range forces. The simulation cell,
containingN particles in a volumeV , is surrounded on all sides by periodic replications of
itself forming an infinite sphere.

Before determining the dynamic properties, each ion was placed so as to assure a
correct description of the crystallographic lattice of the studied system, i.e. rhombohedric
for α-Al 2O3. The velocity assigned to each particle was randomly fixed so that the system
was set to a pre-determined temperature. Then the system was relaxed toward its equilibrium
state at the desired temperature. Simulations were carried out in the canonical system where
the number of the particlesN , the volumeV and the temperatureT of the system are kept
constant. The relaxation and the realization of the canonical system were obtained by using
the Nośe–Hover thermostat method [13]. The Verlet algorithm was employed to update the
translation motion of all the species at the end of each time step. A short time step of 0.1 fs
was used in the simulation due to the small mass of the shells.

3. α-Al 2O3 simulation

The sapphire lattice can be described in the hexagonal system as a succession of anionic
and cationic planes. The oxygen ions form an hexagonal compact stacking slightly distorted
in order to make room for the aluminum ions which occupy two-thirds of the octahedral
interstices [14, 15]. The space group isR3̄c belonging to the trigonal system. Theα-Al 2O3

structure is shown in figure 2.
The simulation of theα-Al 2O3 lattice was performed using the values of the parameters

displayed in tables 1 and 2. The spring constants and the partial charges of the shell-model
are given in table 1. The parametersAij , Cij andρ of the Born–Mayer potential describing
the short-range interaction are given in table 2. All values have been taken from [16].

3.1. Structural investigation

The radial distribution functionsg(r) for Al 3+ and O2− were simulated at 300 K. They
represent the probability of finding a pair of atoms at a distancer apart, relative to the
probability expected for a completely random distribution at the same density [12]. They
provide insight into the crystal structure. Figure 3 shows the total radial distribution obtained
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Figure 2. Structure ofα-Al 2O3 projected on (130). The interatomic distances chosen in table 3
are represented as well as the direction of the displacement of the different Al3+ ions at 2170 K
compared with 300 K.

Table 1. Values of the parameters used in the short-range interactions [16].

Interactions Aij (eV) ρ (Å−1) Cij (eV Å6)

Al–Al 0 0.1 0
O–O 22 764 0.149 27.88
Al–O 1 460.3 0.299 0

Table 2. Values of the parameters used in the shell model [16].

Parameters Al3+ O2−

Spring constant (eV̊A−2) 92.829 103.07
Core charge (e) 1.6170 0.8106
Shell charge (e) 1.3830 −2.8106

from the simulation of bulkα-Al 2O3. For comparison, the static pair distribution for the
structure given by Wyckoff [15] is also represented. The excellent agreement between
crystallographic data and simulation results indicates that the potentials and the model
used in the simulation adequately described the structure ofα-Al 2O3, preserving the initial
configuration of atoms in the molecular dynamics simulations. Furthermore, the crystal
structure ofα-Al 2O3 calculated by molecular dynamics simulation was compared with x-ray
studies atT = 300 K andT = 2170 K [17]. Results are displayed in table 3. Interest was
focused on the selected interatomic distances and bond angles represented in figure 3.

It can be seen that simulation results agreed well with the x-ray experimental
observations, particularly at 300 K. The calculated interatomic distances shifted from those
obtained by x-ray experiment by a maximum deviation of only 2% at 300 K. Moreover,
the bond angles exhibited a 5% average deviation at 300 K. At 2170 K, greater differences
between simulation and experiment have been observed. These deviations are due to the
empirical nature of the potential, as the different parameters of the potential and the shell
model were obtained from fitting of experimental data in equilibrium condition.

The displacement of the different Al3+ ions depicted in figure 2 revealed that the Al
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Figure 3. Total radial distribution function of sapphire obtained from simulation (solid line) and
from the x-ray diffraction studies of Wyckoff [15] (dotted line).

Table 3. Selected interatomic distances (Å) and bond angles (◦) at T = 300 K andT = 2170 K
obtained using simulation and by x-ray diffraction [17].

Simulation Experiment

Distances 300 K 2170 K 300 K 2170 K

Al i–Oii 1.977 2.037 1.971 2.024
Al i–Oix 1.855 1.882 1.852 1.880
Al i–Alii 2.71 2.802 2.657 2.744
Al i–Aliii 2.77 2.835 2.789 2.847
Al i–Aliv 3.149 3.21 3.214 3.262
Al i–Alv 3.504 3.58 3.496 3.565
Oii–Ovi 2.538 2.588 2.522 2.577
Oii–Ovii 2.841 2.88 2.863 2.913
Oii–Oviii 2.565 2.63 2.619 2.675
Oii–Oix 2.67 2.725 2.724 2.779
Al i–Oii–Alii 91.27 91.67 84.76 85.35
Al i–Ovi–Aliii 94.32 84.85 93.61 93.58
Al i–Oix–Aliv 119.91 121.99 120.38 120.41
Al i–Oii–Alv 131.86 130.66 132.19 131.95
Oii–Ali–Ovi 78.35 77.87 79.53 79.09
Oii–Ali–Oix 87.21 87.46 86.40 86.42
Oix–Ali–Oiii 102.40 103.03 101.20 101.57
Oii–Ali–Oiii 162.05 161.18 164.13 163.57

move toward the vacant octahedral site on the threefold axis. As was shown above, the
Al i–Alii bond, which is parallel to thec axis, is the shortest of all the Al–Al distances
in the structure and increases dramatically from 2.77Å at 300 K to 2.835Å at 2170 K.
Therefore, the thermal expansion of this distance is obviously the greatest of all the Al–Al
distances which fall in the following order: distances across faces, distances across edges
and distances across corners. This involves the increasing of the uniformity of the Al–Al
distance between neighbouring Al3+ at high temperature.

The displacement of the O2− ions is less obvious than that of the Al3+ ions. But the
changes in the position of the O lead to less distorted close-packed planes of O atoms at
high temperature.
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3.2. Vibrational properties: phonon density

According to linear response theory, the phonon density can be obtained from the velocity
autocorrelation function [18]. Thus the density of phonon statesρ(ν) is taken to be the
Fourier transform of this autocorrelation function:

ρ(ν) ∝
∞∫

0

〈V (0)V (t)〉〈
V (0)2

〉 cos(2πνt) dt (2)

whereV (t) is the velocity of an atom computed at the end of each time step (every 0.1 fs)
using the Verlet algorithm. The velocity autocorrelation function is assumed to be real and
ρ(ν) is normalized according to

∞∫
0

ρ(ν) dν = 3N (3)

whereN is the total number of aluminum and oxygen ions in the simulation box [12]. The
density of acoustic and optical phonon states has been investigated along the0–Z direction
in the reciprocal space, the primitive cell of which is shown in figure 4.

Figure 4. Brillouin zone of sapphire [19].

The density of phonon states was measured by inelastic neutron scattering (INS)
experiments performed at the Laue–Langevin Institute in Grenoble. The specimen was
a transparentα-Al 2O3 single crystal grown by the Verneuil method. It was annealed at
1500◦C for 4 hours and then cooled to 20 K, the temperature at which the INS experiments
were carried out, in order to reduce the multiphonon background.

Figure 5 shows the results obtained using simulation and experimentation. The
simulation compared well with experiment. Although only an idealistic material containing
perfect ions interacting through a potential was considered, the model gave good results in
reproducing the dynamical properties ofα-Al 2O3. The optical vibrations associated with
the atomic displacements had a maximum frequency of 27 THz.

3.3. Thermodynamic properties

The energy created by the vibration resulting from the oscillation of the atoms around their
equilibrium position determines some thermodynamic properties such as the temperature,
heat capacity, entropy and electrical resistivity which characterize the dynamic behaviour
of the lattice.
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Figure 5. Density of statesρ versus the frequencyν calculated by simulation (solid line) and
obtained by inelastic neutron diffusion experiment (dashed line) at 20 K.

The calculated density of phonon statesρ(ν) at 20 K can be used to derive the heat
capacityCv which is given for quantum harmonic oscillators [19] as follows:

Cv(T ) = 1

kB

νmax∫
0

(
hν

exp(hν/kBT )− 1

)2 exp(hν/kBT )

T 2
ρ(ν) dν (4)

where kB is the Boltzmann constant,νmax the highest frequency recorded in theρ(ν)
spectrum,h the Planck constant andT the temperature.ρ(ν) is assumed not to change
significantly with temperature, so one simulation at a given temperature is sufficient to
obtainCv (at virtually any other temperature). The harmonic approximation is valid as long
as the atomic displacements remain small, a condition verified primarily at low temperature.

The heat capacity in a molecular dynamics simulation can be calculated in another way
using the fluctuations in the total energy of the systemE [12, 20].

Cv(T ) =
[〈E2〉 − 〈E〉2]

kBT 2
(5)

but it is valid only for classical particles in a canonical system. For this reason, the
equation (5) can only be applied at high temperatures. It gives meaningful values ofCv
only for temperature superior to the Debye temperatureθD. In evaluatingCv(T ), it is
also necessary to perform different simulations to obtain variations of the kinetic energy at
different temperatures.

To compare with experimental data which are usually obtained at constant pressure,Cp
is calculated from the theoreticalCv by the following relation

Cp(T ) = Cv(T )+ β
2vT

κT
(6)

wherev is the volume of the system,β the coefficient of volume expansion andκT the
isothermal compressibility. These parameters are taken from experimental data [21, 22].

The difference betweenCv andCp is usually small in solids. This is the case inα-
Al 2O3 sapphire, as represented in figure 6 where theoreticalCv andCp are compared with
experimental values ofCp at different temperatures [23]. According to the temperature,
the theoretical values ofCv were calculated using the equations (4) or (5). For a classical
harmonic system,Cv is simply 3R according to the Dulong–Petit law. Using the Lebowitz
equation (5) (where no harmonic approximation is assumed) a value slightly smaller than
3R was also found at 1000 K. But at very low temperature,Cv remained closer to 3R as
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Figure 6. Comparison between theoretical heat capacity at constant volumeCv and at constant
pressureCp obtained from the equations (4) or (5) and (6) and experimental values [23].

the quantum effects were not taken into account. The theoretical results are very similar to
the experimental values. However, at high temperatureCp is expected to be larger thanCv.

4. Conclusion

In this study, a new shell model which ensures energy conservation to high accuracy was
employed to reproduce theα-Al 2O3 crystal behaviour. In opposition to the earlier shell
model, a small mass was assigned to each shell; these were now treated as dynamic variables.

Good agreement between experiment and calculations was demonstrated for structural,
thermodynamical and vibrational properties ofα-Al 2O3. In particular, at 300 K, the
total radial distribution function as well as the different interatomic distances and bond
angles inα-Al 2O3 were well reproduced by molecular dynamics simulations. At very high
temperature, due to the empirical nature of the potential, deviations appeared. The density
of phonon states obtained by simulation compared well with inelastic neutron scattering
experiments. Thus, the use of such a modified shell model is validated by experiment. Due
to its important applications and its structural complexity,α-Al 2O3 was a good material to
test the validity of our model and molecular dynamics a good tool to obtain meaningful
information on its behaviour.

It could be also interesting to compare our results obtained using such a modified but
simple shell model with those that would be given by a more complex model, such as
the compressible ion model with dipole and quadrupole anion polarizabilities (CIM–DQ)
[25]. This semi-empirical model, developed by Wilsonet al, proved to be very efficient in
calculating energetic and static properties. In contrast to the shell model, it was successful
in predicting the stability of theα-Al 2O3 structure with respect to the bixbyite structure by
accounting for the induction energy associated with the formation of both anion-induced
dipoles and quadrupoles [25]. Nevertheless, this model is based on a polarizable point ion
model which previously failed in reproducing dynamic properties.
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